字体:大 中 小
护眼
关灯
上一页
目录
下一章
第20节 (第5/5页)
蛋算着算着,忽然发现自己这辈子的研究其实错了的情况。 总而言之。 在如今这个时间点,小牛对于求导还是比较熟悉的,只不过还没有归纳出系统的理论而已。 徐云见状又写到: 对f(k+1)求导,可得f(k+1)'=e^x-1+x/1!+x^2/2!+x^3/3!+……+x^k/k! 由假设知f(k+1)'>0 那么当x=0时。 f(k+1)=e^0-1-0/1!-0/2!-.-0/k+1!=1-1=0 所以当x>0时。 因为导数大于0,所以f(x)>f(0)=0 所以当n=k+1时f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)成立! 最后徐云写到: 综上所属,对任意的n有: e^x>1+x/1!+x^2/2!+x^3/3!+……+x^n/n!(x>0) 论述完毕,徐云放下钢笔,看向小牛。 只见此时此刻。 这位后世物理学的祖师爷正瞪大着那一双牛眼,死死地盯着面前的这张草稿纸。 诚然。 以目前小牛的研究进度,还不太好理解切线与面积的真正内在含义。 但了解数学的人都知道,广义二项式定理其实就是复变函数的泰勒级数的特殊情形。 这个级数与二项式定理是兼容的,系数符号也是与组合符号兼容的。 所以二项式定理可以由自然数幂扩充至复数幂,组合定义也可以由自然数扩充至复数。
上一页
目录
下一章